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Abstract

Wave propagation and response of a train of flexibly interconnected rigid cars travelling in a confined cylindrical

‘‘tunnel’’ subjected to fluid dynamic forces are studied theoretically. For the wave propagation analysis, an infinite-

length train represented by a lumped-parameter Timoshenko-beam (LTB) model is employed. The train response is

simulated using a travelling sinusoidal aerodynamic force that mimics the features obtained during running experiments

on real trains. In addition, the response of the system is examined when the velocity of the force approaches the

minimum phase velocity of a travelling wave in the train. The principal aim of this study is to investigate the effect of

aerodynamic forces on the dynamics of a high-speed train running in a tunnel, or more generally of a train-like system

travelling in a coaxial cylindrical tube. The results of this study show that: (a) when aerodynamic forces act on a train,

the frequency bands of the dispersion relation of wave propagation shift, and thus no classical normal modes (standing

wave solutions) exist in the system; (b) the wavelength of the travelling sinusoidal force controls the phase differences

between cars in the train; and (c) the response of the train can be considerably amplified when the speed of the travelling

force coincides with the minimum phase velocity of travelling waves in the train.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Since 1986, fluid–structure interactions of high-speed trains have been studied in Japan as one of the issues affecting

ride quality (Sasaki and Shimomura, 1989; Fujimoto and Miyamoto, 1996). As trains travel at higher speeds, the

vibration amplitudes become greater, especially in tunnel sections. It has been noted that the yawing and lateral

vibration of trains in a tunnel section is more pronounced than when the same train is travelling in the open

environment (non-tunnel), and that the vibration amplitude gradually increases from the head toward the tail of a train.

Initially, track irregularity was supposed to be a major cause of the vibrations, but little correlation between track
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irregularity and the vibrations was found for trains travelling in tunnels; this indicated that track irregularity was not

the cause of the vibrations (Takai, 1989).

A mechanism for the vibrations based on aerodynamic effects of the tail car was proposed by Suzuki et al. (1996).

However, the aerodynamic forces on intermediate cars were not considered. Later, the effect of aerodynamic forces

acting on intermediate cars was investigated (Ishihara et al., 1997; Sakuma et al., 1998; Ueki et al., 1999). Vibrations

and pressure fluctuations on the sides of a car were measured simultaneously, both in the open and in tunnel sections,

and aerodynamic forces on the car were calculated from the pressure data. It was found that: (i) the aerodynamic force

in tunnel sections is much greater than that in the open; (ii) the aerodynamic force and the vibration in tunnel sections

gradually increases from the head toward the tail of the train; and (iii) lateral and yawing vibrations of the car have a

close correlation with the aerodynamic forces acting on the car. Velocity and pressure fluctuations on the sides of a

high-speed train were also measured simultaneously, using hot-film probes and pressure gauges, by Sakuma et al.

(1998). A strong correlation between pressure and velocity fluctuations indicated the existence of large-scale coherent

structures moving downstream at a speed equivalent to about 80% of the train speed.

Numerical simulations and wind tunnel experiments for the flow around a high-speed train travelling in a tunnel have

been conducted by several researchers (Suzuki, 2001; Suzuki et al., 2001, 2002; Nakade et al., 2004). These

investigations indicated that the flow on the sides of intermediate cars of a high-speed train contains vortical structures

generated near the under-corners of those cars facing the tunnel wall. It was also shown that these vortices are

responsible for the pressure fluctuations. Fixing fins on the under-corners of the car bodies has been proposed as a

means of reduction of the aerodynamic force acting on the sides of the cars (Suzuki, 2001). An analytical model

representing the pressure fluctuations travelling along the side of a single car in a train has been proposed by Suzuki

(1999). The pressure fluctuations were assumed to be a sinusoidal travelling wave function, which resulted in a lateral

force and a yawing moment acting on the car; however, the dynamics of the car were not studied.

Fujimoto et al. (1998) measured the vibrations on two adjacent cars of a Japanese high-speed train, both in the open

and in tunnel sections, and calculated the phase difference between the vibration of these cars. It was found that, for

trains in a tunnel, both lateral and yawing motion of the back car lead those of the front car by 90�. This was not

observed when the train was travelling in the open. In addition, they monitored the motion of five adjacent cars over a

period of vibration; with increasing time, for trains travelling in a tunnel, motion of the back car was found to

propagate to the front car. The cause of this motion, however, was not clarified.

Trains and train-like articulated systems consist of a chain of cars with similar mechanical properties, and

consequently they can be considered as a periodic structure. When vibrations propagate as waves in periodic structures,

waves within specific frequency bands can travel freely, while others are attenuated. The velocities of wave propagation

vary with frequency, as defined by a ‘‘dispersion relation’’ which is determined by the nature and configuration of the

system. The analysis of wave propagation by means of the dispersion relation is a valuable tool in understanding the

dynamics of periodic structures.

To the authors’ knowledge, very little work on wave propagation in trains has been reported. The theory of

aeroelastic wave propagation along an infinitely long beam travelling in an air-filled tunnel lined with Helmholtz

resonators was developed by Sugimoto (1996), who also examined the effect of the lining on the stability of the beam.

Flexural wave propagation in a spatially periodic structure of articulated beams was studied by Sugimoto et al. (2002)

and Watanabe and Sugimoto (2003, 2005). These papers considered flexural wave propagation in a spatially periodic

structure consisting of identical beams of finite length, connected to adjoining ones by couplers giving restoring moment

at the junctions. Wave propagation in an infinite-length train of coupled rigid bodies mounted on elastic supports in a

vacuum was studied by Manabe (2002). Manabe showed that waves can propagate freely in an infinite-length train in

both the positive and negative directions within only two frequency bands (Born and Hunag, 1954). These frequency

bands correspond to two different vibrational modes, and their propagation velocities are of the same order of

magnitude as the running velocity of high-speed trains. No stability analysis was carried out in Manabe’s work.

As shown in Part 1 of this study (Sakuma et al., 2008), the present system can be modelled as a lumped-parameter

Timoshenko beam, LTB, on elastic supports in air flow. Thus, the present study may provide a general framework for

the discussion of the effects of aerodynamic forces and stiffness configuration on wave propagation in LTB models on

elastic supports.

In this study, the theoretical studies of Paı̈doussis (1986, 2003) and Suzuki (1999), referred to in Part 1 (Sakuma et al.,

2008) and in the foregoing, will be employed as the foundation for the investigation of the dynamics of a train in a

tunnel. Moreover, we not only employ these earlier studies but also integrate and extend them. Initially, in Section 2, we

analyze wave propagation in an infinite-length train of coupled rigid bodies mounted on elastic supports, both in

vacuum and in air. Then, in Section 3, we study the response of a finite-length train to a travelling sinusoidal

aerodynamic force that simulates the features obtained during running experiments on real trains. In addition, the

response of the system is examined when the velocity of the force approaches the minimum phase velocity of the
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travelling wave obtained in Section 2. The motivation for this is that it is known that if any one-dimensional or quasi-

one-dimensional continuous periodic structure is excited by a harmonic pressure field which is convected along the

length of the structure, and if the convection velocity is equal to the phase velocity of one of the free waves in the

structure, then that wave will be excited and a large response will occur (Mead, 1971; Manabe, 2002).

Note that the dynamic response of articulated beams to a moving load is somewhat more complicated than that of

continuous systems. The complication originates from the fact that in discrete systems each vibration frequency

corresponds to infinitely many spatial forms (these are not the physical modes of vibrations but simply motions with

different wavelengths). This is in contrast to continuous systems in which only a few (normally one per physical mode)

spatial forms correspond to a frequency (Suiker et al., 2001).

The main contribution of this paper is the study of the response and mode shapes of an LTB train of free–free coupled

rigid cylinders with elastic supports to a travelling sinusoidal aerodynamic force. This simulates very closely the features of

aerodynamic forces obtained in actual running experiments. In particular, the results we obtain, clarifying the mechanism

by which the wavelength of the travelling force controls the phase differences between cars in a train, are new.
2. Wave propagation in an infinite-length train according to the LTB model

2.1. Derivation of the dispersion relation

In this section, the dispersion relation is derived by substituting travelling-wave solutions into the simplified

equations of motion.

The dimensionless equations of motion for a train of N identical cars given in Part 1 of this study (Sakuma et al.,

2008) are simplified by (i) setting to zero all mechanical damping terms, (ii) omitting the terms for the leading ðj ¼ 1Þ

and trailing ðj ¼ NÞ cars; this allows the length of the train be considered as infinite, and (iii) letting kfj ¼ kbj ¼ kb,

kZj ¼ kZjþ1 ¼ kZ, kyj ¼ kyjþ1 ¼ ky, and lj�1 ¼ lj ¼ ljþ1 ¼ l in the dimensionless equations of motion for the jth car.

Then, the simplified equations are

2ð1þ wmÞl
d2ycj

dt2
þ

2ml

p
ðCNuþ cÞ

dycj

dt
þ 2wmlu

daj

dt
� kZðycjþ1 � 2ycj þ ycj�1Þ

þ kZlðajþ1 � aj�1Þ �
2ml

p
1�

e� 1

rh

� �
CT � CN

� �
u2aj þ 2kbycj ¼ 0, (1)

2l
1

4
þ

l2

3
ð1þ wmÞ

� �
d2aj

dt2
� 2wmlu

dycj

dt
þ
2ml3

3p
ðCNuþ cÞ

daj

dt
þ ð�ky þ kZl2Þðajþ1 � 2aj þ aj�1Þ

þ kZlðycj�1 � ycjþ1Þ þ ð2b
2kbl2 þ 4kZl2 � 2wmlu2

Þaj ¼ 0. (2)

Assuming travelling-wave solutions of the form

yj ¼ Y eiðot�kLj Þ and aj ¼ Aa e
iðot�kLj Þ, (3)

where o is the dimensionless frequency, t the dimensionless time, k the dimensionless wavenumber, and

Lj ¼ 2
Xj�1
k¼1

lk þ lj (4)

is the dimensionless length from the head of the train to the middle point of the jth cylindrical car, which is used in place

of the continuous location x [cf. Harrison and Nettleton (1997)]. Introducing the notation Bs ¼ ð2ml=pÞ
f½1� ðe� 1Þ=rh�CT � CNg, Ba ¼ ð2ml=pÞðCN uþ cÞ, and Bb ¼ 2wmlu the travelling-wave solution to Eq. (1) yields

Aa

Y
¼

2o2ð1þ wmÞl � ioBa þ 2kZðcos k � 1Þ � 2kb

�2ikZl sin k þ ioBb � Bsu2
. (5)

In the same manner, for Eq. (2), letting Bw ¼ 2b2kbl2 þ 4kZl2 � 2wmlu2, BJ ¼ 2lf1
4
þ 1

3
l2ð1þ wmÞg, and Be ¼ ð2ml3=3pÞ

ðCNuþ cÞ, we obtain

Aa

Y
¼

iðoBb � 2kZl sin kÞ

�BJo2 þ iBeoþ 2ð�ky þ kZl2Þðcos k � 1Þ þ Bw
. (6)
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Combining Eqs. (5) and (6) and grouping terms in o, the following fourth-order polynomial is obtained:

2BJ ð1þ wmÞlo4 � ifBJBa þ 2Beð1þ wmÞlgo3 þ ½�B2
b � BeBa þ 2BJfkZðcos k � 1Þ � kbg

� 2ð1þ wmÞlf2ð�ky þ kZl2Þðcos k � 1Þ þ Bwg�o2 þ ½4BbkZl sin k þ ið�BbBsu2

� 2BefkZðcos k � 1Þ � kbg þ Baf2ð�ky þ kZl2Þðcos k � 1Þ þ BwgÞ�oþ ½�4ðkZl sin kÞ2

� 2f2ð�ky þ kZl2Þðcos k � 1Þ þ BwgfkZðcos k � 1Þ � kbg þ ið2kZlBsu2 sin kÞ� ¼ 0. (7)

Eq. (7) will be solved numerically for o for varying values of k.

If, instead of Eqs. (3), solutions of the following form are assumed:

yj ¼ Y eiot e�kLj and aj ¼ Aa e
iot e�kLj , (8)

for Eqs. (1) and (2), dispersion relations are obtained for decaying waves along the length of the train, with the

amplitude of the waves decaying exponentially as they propagate. For decaying waves, a solution similar to Eq. (7) is

obtained, except that the cosine and sine terms are replaced by hyperbolic functions.

2.2. Free wave propagation in vacuum

The formulation of the dispersion relation of an infinite-length train in air in a tunnel has been derived and is given by

Eq. (7). In this section, based on this formulation, the dynamics of the train in vacuum will be studied and compared to

previous work by Manabe (2002), in which the equations of motion were transformed into simultaneous homogeneous

difference equations and solved via an eigenvalue analysis. The values for the system parameters of the infinite-length

train in a tunnel are given in Table 1. For the sake of clarity, all mechanical damping terms are set to zero. A fixed

position of the supporting springs is employed by considering typical arrangements of high-speed trains: bogie cars or

articulated ones, as illustrated in Fig. 1. We use b ¼ 0 to represent supports at the centre of the car and b ¼ 1 for

supports at the end of a car; b ¼ 0:72 is used for bogie cars and b ¼ 1 for articulated ones (Fujimoto, 1999).

The infinite-length train has two vibrational mode shapes as shown in Fig. 2. Each car, which is the component

substructure of the train model, has two degrees of freedom in the lateral translational and yawing directions. Similarly,

because the number of mode shapes of a periodic structure generally corresponds to that of the degrees of freedom of

each component (Brillouin, 1946), the infinite-length train may be considered to have two modes. Here, we call the

translational motion Mode 1, and the rotational one Mode 2.

Next, we illustrate the results obtained in terms of both the dimensional and the dimensionless dispersion relations;

the dimensional relation gives a better image of the motion of actual trains. The particular case of b ¼ 1 and rf ¼ 0,

which represents articulated cars in a vacuum, is considered. Figs. 3 and 4 show the frequency–wavelength

(wavenumber) relationship, i.e., the dispersion characteristics, as well as the phase and group velocities cph and cgp,

which are defined as follows:

cph ¼
o
k

and cgp ¼
do
dk

. (9)

The velocities cph and cgp are plotted against wavelength l (m) in Fig. 3(b) and against frequency f (Hz) in Fig. 4. In

addition, the amplitude ratio la=y, where y and la are the displacements at the ends of each car for translational and

rotational motions, respectively, is illustrated in Fig. 4(a).
Table 1

System parameters of the infinite-length train employed for the wave propagation analysis

N ¼ 1 2ljð¼ lcarÞ ¼ 14:12 (25m)

LA ¼ 1 a ¼ 1:77m
R�=a ¼ 2:24 (in a tunnel) or 1 (in vacuum) A=Ad ¼ 0:2 (in a tunnel) or 1 (in vacuum)

rf ¼ 1:23 kg=m3 (in air) or 0 (in vacuum) rcar ¼ 151:6kg=m3

b ¼ 0:72 or 1.0 A0=A ¼ 1:0
CT ¼ 0:01288 CN ¼ CT or CT=1:4
CD ¼ 0 Cb ¼ 0:157
f n ¼ 1:0 f t ¼ 0:8

kf ¼ kb ¼ 3:53� 105 N=m ka ¼ 0Nm=rad

kZ ¼ 9:8� 103 N=m k0 ¼ 1:0� 104 N=m
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As shown in Figs. 3(a) and 4(a), there are two ‘‘propagation bands’’: one in the frequency range 0.71–0.73Hz

corresponding to Mode 1, and the second in the frequency range 1.26–1.73Hz corresponding to Mode 2. Consequently,

waves can propagate freely (i.e., unattenuated) in the train, forward or backwards, only within these two frequency

bands. These bands correspond to the two mode shapes shown in Fig. 2. The reason that the lower frequency band

(0.71–0.73Hz) corresponds to Mode 1 and the higher one (1.26–1.73Hz) to Mode 2 can be understood from the

amplitude ratio la=y shown in Fig. 4(a). As can be seen in the figure, the amplitude ratio of the lower frequency band

(0.71–0.73Hz) is quite small ðp10�2Þ, or equivalently ybla, indicating that the displacement of the translational

motion is dominant in the lower frequency band. Accordingly, the lower frequency band corresponds to Mode 1 as

shown in Fig. 2. On the other hand, the amplitude ratio of the higher frequency band (1.26–1.73Hz) is quite large

ðX102Þ, or equivalently y5la, indicating that the displacement of the cars is mainly one of yawing in the higher

frequency band. Therefore, the higher frequency band corresponds to Mode 2.

Fig. 4(a) shows that the phase and group velocities of the present solutions agree very well with those of Manabe’s

(2002), which confirms the formulation of the dispersion relation.

As shown in Fig. 3, frequency peaks and valleys occur at l1, l2; . . . ; ln. The first peak at l1 corresponds to the

minimum wavelength of the train, which is equal to the length of two cars, 2Lcar ¼ 50m. In this case, adjacent cars

oscillate in opposing directions, which corresponds to the ‘‘antiphase’’ pattern of Modes 1 and 2, as shown in Fig. 2.

The other peaks, l2, l3; . . . ; ln, correspond to aliasing waves ðln ¼ 50=n; n ¼ 2; 3; . . .Þ below the minimum wavelength.

On the other hand, the maximum wavelength of the train ðlX400m ¼ 16LcarÞ corresponds to the ‘‘in-phase’’ patterns

of Modes 1 and 2 in Fig. 2, where all the cars oscillate in the same direction.

From Fig. 4(a) it is seen that the phase velocity of Mode 1 decreases from 1:0� 103 m/s at 0.71Hz to 37m/s at

0.73Hz, while that of Mode 2 from 1:0� 103 m/s at 1.26Hz to 87m/s at 1.73Hz. From Fig. 4(a) it is shown that the

group velocities at the extremities of the upper and lower frequency bands of Modes 1 and 2 become nearly zero, while

in the middle of each band the group velocities of Modes 1 and 2 are approximately 1.4 and 36m/s, respectively. Note

that the frequencies at the extremities of the lower frequency bands of Modes 1 and 2 correspond to the ‘‘in-phase’’

mode, and those of the upper one to the ‘‘antiphase’’ mode, respectively, as shown in Fig. 2. The phase velocities

become almost infinity at the extremities of the lower frequency bands of Modes 1 and 2 because all cars in the train

vibrate in phase. The group velocities, which correspond to the propagation of energy, at the extremities of the upper

and lower frequency bands of Modes 1 and 2 become nearly zero because the vibrations of the cars correspond to

standing waves. On the other hand, the group velocities in the middle of each band have peaks but they are always

lower than the phase velocities.

As mentioned in the foregoing section, it is known that, when the velocity of a harmonic travelling aerodynamic force

approaches the minimum phase velocity along a periodic structure, there may be amplification of the disturbances,

leading to the possibility of structural damage (Mead, 1971; Manabe, 2002). Typical running velocities of high-speed

trains are in the range 50–90m/s, which are of the same order as the phase and group velocities shown in Fig. 4(a).

Running trains are subject to external perturbations from the surroundings; for example, from irregularities of the rails,
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overhead line equipment, and air disturbances. In other words, in the train coordinate system, these perturbations travel

along the train. Hence, these perturbations may have an influence on the dynamics of the train. Later, in Section 3, the

response of the system will be studied when the velocity of a moving force along the train approaches the minimum

phase velocity for a travelling wave in the train.

2.3. The effect of translational, rotational, and supporting springs on wave propagation in vacuum

In the previous section, the formulation of the dispersion relation was verified by comparing the results obtained with

previous work by Manabe (2002). In this section the effects of the translational (or shearing) and rotational

(or bending) springs between cars, and of the position of supporting springs (b ¼ 0:72 and 1.0) on wave propagation in

vacuum ðrf ¼ 0Þ are examined.

Fig. 4(b) illustrates the effect of the spring stiffness on wave propagation. The top part of Fig. 4(b), for the case where

all the springs have non-zero values, shows that the frequency band of Mode 2 (the rotational mode from 0.91 to

1.52Hz) is wider than that of Mode 1 (the translational mode from 0.69 to 0.71Hz), and the frequency band of Mode 2

is higher than that of Mode 1. This is also the case for the other results shown in Fig. 4(b) as well. The effect of the

position of the supporting springs can be seen by comparing the results of Fig. 4(a) ðb ¼ 1:0Þ with those of Fig. 4(b)

ðb ¼ 0:72Þ. Recall that b ¼ 0:72 represents bogie cars and b ¼ 1 articulated ones, as illustrated in Fig. 1. Figs. 4(a) and

(b) show that, as the supporting position changes from b ¼ 1 to 0.72, the band of Mode 1 moves from the range

0.71–0.73 to 0.69–0.71Hz, and that of Mode 2 from 1.26–1.73 to 0.91–1.52Hz. Moreover, the range of frequencies in

the bands is reduced to some extent. Thus, it is demonstrated that the position of the supporting springs has some effect

on wave propagation in the infinite-length train.

The second part of Fig. 4(b), corresponding to the case with no translational springs, kZ ¼ 0, indicates that no

propagation band exists for the translational mode (Mode 1). The third part of Fig. 4(b), corresponding to no

rotational springs, ka ¼ 0, shows that the range of Mode 2 is significantly narrower than for the other cases. Hence, the

rotational springs ka have a considerable effect on the wave propagation for Mode 2. It should be noted that, even

without rotational springs, a narrow propagation band of the rotational mode (Mode 2) exists. The bottom part of

Fig. 4(b) shows the case with no supporting springs, kb ¼ 0, and the bands of both Modes 1 and 2 are wider than in the

other cases. Note that the lower bounding frequency of Mode 1 becomes zero when kb ¼ 0.

2.4. Dimensionless dispersion relation

In the foregoing sections, the dimensional dispersion relations have been used to examine wave propagation in an

infinite-length train. Hereafter, dimensionless dispersion relations will be used instead. The dimensionless equivalent of

the results presented in Fig. 3 are shown in Fig. 5 and they give additional insight. The results in terms of dimensional

and dimensionless dispersion relations are, of course, physically the same. However, for the results of Fig. 3

(dimensional) the wavelength l is used in the abscissa, whereas in Figs. 5 and 6 the dimensionless wavenumber k is used

instead. It is physically easier to appreciate a positive or negative k for forward or backward travelling waves, and less

easy to consider a negative wavelength. The dimensional results in Fig. 3(a) correspond to the dimensionless ones of the

right half of Fig. 5(a).

As shown in Fig. 5(a), at the upper bounding frequencies of Mode 1 ðo ’ 2:44Þ and Mode 2 ðo ’ 5:8Þ, the

dimensionless wavenumber k reaches the values of �p, where each car has maximum phase difference to the adjacent

cars. This corresponds to the ‘‘antiphase’’ patterns in Fig. 2. In the same manner, when the dimensionless wavenumber

is zero at the lower bounding frequencies of Mode 1 ðo ’ 2:38Þ and Mode 2 ðo ’ 4:2Þ, the cars have zero phase

difference with adjacent cars.

Note that the dispersion relations are symmetric with respect to k ¼ 0, and thus the phase and group velocities cph

and cgp are also symmetric with respect to the origin ðcph or cgp;oÞ ¼ ð0; 0Þ, as seen in Fig. 5(b). In this case, positive and

negative waves exist travelling at the same speed. In other words, a standing wave may exist if a finite-length train is

considered.

2.5. The effect of aerodynamic force on wave propagation

Wave propagation for the train in vacuum ðrf ¼ 0Þ was examined in the foregoing sections. In this section,

aerodynamic effects on wave propagation are taken into account for infinite-length trains of bogie cars ðb ¼ 0:72Þ and
the articulated system ðb ¼ 1:0Þ, cf. Fig. 1. Then, the effect of the Coriolis terms and the other fluid damping terms on

the dispersion relation is examined.
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Fig. 6 shows the dimensionless dispersion relations for the infinite-length trains of bogie cars (b ¼ 0:72) and the

articulated system ðb ¼ 1:0Þ with u ¼ 0 and 50. When the train is stationary ðu ¼ 0Þ, the dispersion relations of Modes 1

and 2 are symmetric with respect to k ¼ 0. In this case, the forward and backward travelling waves have the same

frequencies, and thus standing waves may exist along the train, as explained in connection with Fig. 5. (Note that, since

similar symmetric results are obtained for the case of b ¼ 1:0, they are not given in Fig. 6.) When the train is moving at

a velocity of u ¼ 50 (U ¼ 166m/s ’ 598 km/h),1 for b ¼ 0:72 both curves for Modes 1 and 2 shift to lower

dimensionless frequencies (downwards) and also to lower dimensionless wavenumber (to the left). In addition, the shift

to lower dimensionless wavenumber is considerably larger for Mode 1 than for Mode 2. For b ¼ 1:0 with u ¼ 50, the

results are similar, but the shifts are much smaller than for b ¼ 0:72; excepting that the curve of Mode 2 shifts to a

higher frequency.

Next, the effect of these shifts on the dispersion relations due to the aerodynamic force is investigated. It has been

shown (Chen and Rosenberg, 1971; Paı̈doussis, 1998) that the presence of the Coriolis term in the equation of motion

renders the phase velocity different for the forward and the backward travelling waves in a supported pipe conveying

fluid. Thus, the effect of the Coriolis terms, as well as the fluid damping terms (including the Coriolis terms), on the

aforementioned shifts is examined. This is done by comparing dispersion relations obtained from the equations of

motion with and without these terms. The Coriolis terms in Eqs. (1) and (2) are 2wmluðdaj=dtÞ and
1Note that even though the relative velocity of air, U ¼ 166m/s ð’ 598km/hÞmay appear to be impractical, the Magnetic Levitation

(MAGLEV) train in Japan is being tested at speeds in the 500 km/h range, and its top speed may be increased even more in the future

(Sawada, 2000). On 2nd December 2003, the three-car MAGLEV train attained a maximum speed of 581 km/h in a manned vehicle

run.
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ð2ml3CNu=3pÞðdaj=dtÞ, respectively. The fluid damping terms, which are the first-order derivatives of ycj and aj with

respect to time, in Eqs. (1) and (2) are ð2ml=pÞðCNuþ cÞðdycj=dtÞ þ 2wmluðdaj=dtÞ and �2wmulðdycj=dtÞ þ ð2ml3=3pÞ
ðCNuþ cÞðdaj=dtÞ, respectively. The dispersion results obtained with and without these terms are shown in Fig. 7. When

only the Coriolis forces are deleted, the shifts are much smaller than for the case which includes the fluid damping

terms. On the other hand, when the fluid damping terms including the Coriolis ones are deleted, the curves (solid lines)

become symmetric with respect to k ¼ 0. Therefore, the fluid damping terms, including the Coriolis terms, are the main

cause of these shifts, and that these terms render classical normal modes impossible.

To examine the effect of viscous frictional drag on the system, a calculation with CN=CT ¼ 1:4 was conducted, but

exactly the same results as for CN=CT ¼ 1:0 (shown in Fig. 7) were obtained (hence, no figures are shown). Therefore, it

can be concluded that the ratio between CT and CN has very little effect on the dispersion relation, even though it has a

considerable effect on the stability of the train, as shown in Part 1 (Sakuma et al., 2008). This is because the term

accounting for CT and CN , �ð2ml=pÞf½1� ðe� 1Þ=rh�CT � CNgu
2aj , is not involved in the fluid damping terms.

Finally, the relationship between the dimensionless frequency ReðoÞ and dimensionless flow velocity u for forward

travelling waves [upper branch where ReðoÞ40] and backward travelling ones [lower branch where ReðoÞo0] is

illustrated in Fig. 8 for dimensionless wavenumbers k ¼ p and k ¼ 0:1p. Note that the present analysis assumes

incompressible flow over slender bodies, and thus the values of o where u490 or U ¼ 300m/s are shown just for

reference. As seen in Fig. 8, irrespective of whether k ¼ p or k ¼ 0:1p, both loci are almost symmetric with respect to

the ReðoÞ ¼ 0 axis, even though the two absolute values of o for the upper and lower branches are not exactly equal at

the same flow velocity. Also, the loci for k ¼ p coalesce at u ’ 104, and those for k ¼ 0:1p at u ’ 109, practically on the

u-axis. In general, at the point of crossing the u-axis, the negative ReðoÞ becomes zero, and thus there is no longer a

backward travelling wave, which physically corresponds to a divergence. On the other hand, the point of coalescence of
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the two solution branches corresponds to where o becomes complex, and is the critical value for flutter. It should be

kept in mind that, in the range of the flow velocities we analyze ðup90Þ, neither divergence nor flutter can be observed in

the present system for the infinite-length train.
3. Transient and steady-state response of the LTB train to a travelling aerodynamic force along the train

In this section, the response of a finite-length train to a travelling sinusoidal aerodynamic force is studied; this

simulates the features obtained during running experiments on real trains. In addition, the response of the system is

examined when the velocity of the force approaches the minimum phase velocity of the travelling wave obtained in

Section 2.

First, based on previous work for a single car by Suzuki (1999), the lateral force and yawing moment, Qycj
ðtÞ and

Qaj
ðtÞ, acting on cars in the finite-length LTB train are obtained. Second, some features of the lateral force and yawing

moment will be illustrated. In particular, the phase difference between two adjacent cars will be examined analytically.

Third, the lateral force and yawing moment will be combined with the equations of motion derived in Part 1 (Sakuma

et al., 2008). Fourth, the transient response of the train and its mode shapes when the train is subjected to sinusoidal

aerodynamic forces with four different wavelengths (17.5, 25, 30, and 33.3m) will be obtained by using Runge–Kutta

numerical integration of the equations of motion. The effects of the wavelength of the sinusoidal aerodynamic force on

the mode shapes of the finite-length train are then clarified. The steady-state mode shapes are compared to those of

previous work obtained from running experiments. Finally, the response of a train to the force moving at the minimum

phase velocity of the travelling wave in the train, obtained in Section 2, is examined.

3.1. Travelling aerodynamic force along the train

3.1.1. Assumptions

The following features obtained from running experiments on real trains (Sakuma et al., 1998; Suzuki, 2001) are

assumed:
(i)
 large-scale coherent structures exist, which move downstream in the space between the side of the train and the

tunnel wall at a speed equivalent to about 80% of the train speed;
(ii)
 the amplitude of the aerodynamic force, F�E , acting on the cars is directly proportional to the square of the air

velocity;
(iii)
 a dimensionless coefficient, CE , and frequency, St, of the force can be defined from the foregoing as CE	0:06 and

St	0:1, respectively, where St ¼ 2af E=U , oE ¼ 2pf E , and CE ¼ F�E=ð
1
2
raU2Þ.
In addition, the wavelength of the travelling sinusoidal force is assumed to be constant along the entire length of the

train.

3.1.2. Derivation of the generalized force

Fig. 9 shows a schematic of the sinusoidal aerodynamic force travelling along five adjacent cars, from the head

toward the tail of the train. The travelling aerodynamic force, per unit length of the train, is assumed to be a sinusoidal

wave, and is given by

FEX ðx
�; t;UÞ ¼ F�EðUÞ cosðk

�x� � o�EtÞ ¼ F�EðUÞ cosðk
�
ðL�j þ x�Þ � o�EtÞ, (10)

where

L�j ¼ 2
Xj�1
k¼1

l�k þ l�j (11)

is the length from the head of the train to the middle point of the jth cylindrical car, k� ¼ 2p=l�E is the wavenumber of

the aerodynamic force, f �E the frequency, o�E ¼ 2pf �E the circular frequency, VE ¼ f �El
�
E ¼ o�E=k� the travelling speed of

the aerodynamic force, and x� the local coordinate on the jth car which is related to the x� coordinate by

x� ¼ 2
Xj�1
k¼1

l�k þ l�j þ x� ¼ L�j þ x�. (12)
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Fig. 9. Schematic of the sinusoidal aerodynamic force travelling from the head toward the tail of the five adjacent cars in the train.
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Variables with an asterisk are dimensional values. The virtual work done by the aerodynamic force associated with

virtual displacements dðy�cj þ x�ajÞ is given by

dW j ¼

Z l�j

�l�j

FEXdðy�cj þ x�ajÞdx. (13)

Hence, the generalized forces Q̂ycj
(lateral force) and Q̂aj

(yawing moment) on the jth cylindrical car are

Q̂ycj
¼

dW j

dy�cj

�����
daj¼0

¼
F�E
k�
½sinfk�ðL�j þ l�j Þ � o�Etg � sinfk�ðL�j � l�j Þ � o�Etg�,

¼
l�EF�E
p

sin
2pl�j

l�E

� �
cos

2pL�j

l�E
� o�Et

� �
, (14)

Q̂aj
¼

dW j

daj

����
dy�

cj
¼0

¼
F�El�j

k�
½sinfk�ðL�j þ l�j Þ � o�Etg þ sinfk�ðL�j � l�j Þ � o�Etg�

þ
F�E

k�
2
½cosfk�ðL�j þ l�j Þ � o�Etg � cosfk�ðL�j � l�j Þ � o�Etg�

¼
l�EF�E
p

l�j cos
2p
l�E

l�j

� �
�

l�E
2p

sin
2p
l�E

l�j

� �� �
sin

2p
l�E

L�j � o�Et

� �
. (15)

Letting F�E ¼
1
2
CEraU2, where CE is the coefficient of the travelling aerodynamic force, introducing the

dimensionless quantities

l ¼ l�=a; lE ¼ l�E=a; t ¼ t

ffiffiffiffiffiffiffiffiffi
k0

m0a

s
; u ¼ U

ffiffiffiffiffiffiffi
m0

k0a

r
; oE ¼ o�E

ffiffiffiffiffiffiffiffiffi
m0a

k0

r
; m ¼

M0

m0
,

where k0 is the reference coefficient for translational spring between the cylinders and the duct, m0 the mass of cylinder

per unit length, and M0 the virtual mass of the fluid per unit length of the cylinder, and noting that

l�EF�E ¼ alE
1

2
CEraU2 ¼

1

2
alECE

M0

pa2

� �
a

k0a

m0
u2

� �
¼

mlECE

2p
k0að Þu2,

the generalized force may be written as

Q̂ycj
¼

mlECE

2p2
k0að Þu2 sin

2plj

lE

� �
cos

2pLj

lE

� oEt
� �

.

To be consistent with the equations given in Part 1, we obtain the following for the dimensionless generalized

aerodynamic force for the jth car:

Qycj
¼

Q̂ycj

ak0
¼

mlECEu2

2p2
sin

2plj

lE

� �
cos

2p
lE

Lj � oEt
� �

. (16)

Then, its amplitude, Qycj
, is

Qycj
¼

mlECEu2

2p2
sin

2plj

lE

� �
. (17)
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In the same manner, for the yawing moment we have

Q̂aj
¼

mlECE

2p2
ðk0a2Þu2 lj cos

2p
lE

lj

� �
�

lE

2p
sin

2p
lE

lj

� �� �
sin

2p
lE

Lj � oEt
� �

;

and hence the dimensionless yawing moment Qaj
¼ Q̂aj

=ak2
0 is given by

Qaj
¼

mlECEu2

2p2
lj cos

2p
lE

lj

� �
�

lE

2p
sin

2p
lE

lj

� �� �
sin

2p
lE

Lj � oEt
� �

(18)

and its amplitude, Qaj
, is

Qaj
¼

mlECEu2

2p2
lj cos

2p
lE

lj

� �
�

lE

2p
sin

2p
lE

lj

� �� �
. (19)

3.1.3. Features of the force

The generalized forces for the travelling aerodynamic force along the train were derived in Section 3.1.2. Here, some

features of Qycj
ðtÞ and Qaj

ðtÞ are examined.

The amplitudes of both forces, Qycj
and Qaj

, are a function of the wavelength lE , as seen in Eqs. (17) and (19) and

illustrated in Fig. 10. The vertical axes are arbitrarily scaled with respect to the absolute values for a wavelength of 30m.

Increasing the wavelength from zero, the envelopes of the absolute amplitudes of both forces increase; this is because

the coefficient mlECEu2=ð2p2Þ in Eqs. (17) and (19) is directly proportional to wavelength. On the other hand, both

forces periodically become zero because of their dependence on the trigonometric sine and cosine functions. As seen in

Eq. (17), Qycj
is proportional to sinð2pl�j =l

�
EÞ and becomes zero when 2pl�j =l

�
E ¼ np or l�E ¼ 2l�j =n ¼ 25=n, where n is a

positive integer and 2l�j ¼ lcar ¼ 25m as given in Table 2. Hence, the lateral force, Qycj
ðtÞ, becomes zero when l�E ¼

25=n ¼ 25:0; 12:5; 8:33; . . . for n ¼ 1; 2; 3; . . . ; respectively, as seen in Fig. 10; thus, for these wavelengths no lateral force

acts on the cars. Searching for the wavelengths at which the yawing moment becomes zero is more complicated than for

the lateral force; this is because Qaj
ðtÞ is proportional to flj cosð2plj=lEÞ � ðlE=2pÞ sinð2plj=lEÞg. As seen in Fig. 10 for

example, the yawing moment becomes zero at a wavelength of 17.5m. Therefore, it is expected that the response of the

cars to a sinusoidal aerodynamic force with certain wavelengths, such as 17.5 and 25m, will be purely lateral

translational or rotational motion. This will be demonstrated in Section 3.3. As shown in Eqs. (16) and (18), Qycj
is

proportional to cosð2pLj=lE � oEtÞ, while Qaj
to sinð2pLj=lE � oEtÞ. Because the cosine function leads the sine by 90�,

the lateral force Qycj
leads the yawing moment Qaj

by 90�. Hence, the cars are expected to move first in the lateral

direction and then in the rotational one. The features of the forces obtained here are in good agreement with those of

previous results for a single car by Suzuki (1999).

In the foregoing, the phase relationship between Qycj
ðtÞ and Qaj

ðtÞ for a single car was given. Next, the phase

relationship between two adjacent cars, Car j þ 1 and Car j, in the train is examined. Since the length of all cars is 2l,

using Eq. (11) we have

Ljþ1 ¼ Lj þ 2l. (20)

Substituting Eq. (20) into Eq. (16) with Ljþ1 replacing Lj , we obtain

cos
2p
lE

Ljþ1 � oEt
� �

¼ cos
2p
lE

ðLj þ 2lÞ � oEt
� �

¼ cos
2p
lE

Lj � oEt
� �

þ
2p
lE

2l

� �
. (21)
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Fig. 10. Amplitudes of lateral force, Qycj ðtÞ
, and yawing moment, Qaj

ðtÞ acting on Car j in the train. See Eqs. (17) and (19).
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Table 2

System parameters for a finite-length train in a tunnel

N ¼ 5 2ljð¼ lcarÞ ¼ 14:12 (25m) LA ¼ 70:6 (125m)

a ¼ 1:77m b ¼ 0:72 R�=a ¼ 2:24
A=Ad ¼ 0:2 A

0

=A ¼ 1:0 rf ¼ 1:23kg=m3

rcar ¼ 151:6kg=m3 U ¼ 5:0 ð¼ 102:3m=s ¼ 368km=hÞ CN ¼ 0:00644

CT ¼ 2CN ¼ 0:01288 CD ¼ 0 Cb ¼ 0:157
f n ¼ 1:0 f t ¼ 0:8 CE ¼ 0:06
St ¼ 0:1 kf ¼ kb ¼ 3:53� 105 N=m ð¼ k0Þ ka ¼ 3:0� 107 Nm=rad

kZ ¼ 9:8� 103 N=m cf ¼ cb ¼ 7:66� 104 N s=m ca ¼ 0Nms=rad

cZ ¼ 0N s=m
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Because the phase expression in Eq. (16) is the same as that in Eq. (18), Eq. (21) also gives an indication of the phase

relating the yawing moment between adjacent cars. This equation indicates that both the lateral force and the yawing

moment acting on the front car, Car j, lead the back car, Car j þ 1, by the phase difference ð2p=lEÞ2l. For this reason,

the front car, Car j, is expected to move first in the lateral and rotational directions, and then, after a phase interval of

ð2p=lEÞ2l, the back car, Car j þ 1 will move.

3.2. Solution of the equations of motion

The equations of motion are solved by the Runge–Kutta method. The dimensionless linearized equations of motion

for the system subjected to a travelling aerodynamic force FEX ðtÞ are written in matrix form as

½M�
€y

€a

� �
þ ½C�

_y

_a

� �
þ ½K �

y

a

n o
¼ fFEX ðtÞg, (22)

where ½M� is the mass matrix, ½C� the damping matrix, and ½K� the stiffness matrix, fyjagT ¼ fy1; a1; y2; a2; . . . ; yN ; aNg
T

is the vector of the generalized coordinates and fFEX ðtÞg ¼ fQyc1
;Qa1 ;Qyc2

;Qa2 ; . . . ;QycN
;QaN
gT, which are given in

Eqs. (16) and (18). Let the following square partitioned matrices be defined as

½B� ¼
½0� ½M�

½M� ½C�

" #
; ½E� ¼

�½M� ½0�

½0� ½K �

" #
,

each matrix being of order 2N; similarly, we define the vector fzg and fFðtÞg as

fzg ¼
f _yj_ag

fyjag

( )
; fFðtÞg ¼

f0g

fFEX ðtÞg

( )
.

Then, equations of motion (22) may be written in the form

½B�f_zg þ ½E�fzg ¼ fF ðtÞg. (23)

Pre-multiplying Eq. (23) by ½B��1 and defining ½B��1½E� ¼ �½Y �, Eq. (23) can be written as

f_zg ¼ ½Y �fzg þ ½B��1fF ðtÞg ¼ ff ðfzg; tÞg. (24)

Finally, the fourth-order Runge–Kutta method is applied to Eq. (24), and the time histories of the displacement and the

velocity of the system are obtained. The convergence of this computation has been validated by employing different

time increments, Dt; we employ Dt ¼ 0:01 in the computation. Initial conditions of ycj ¼ aj ¼ dycj=dt ¼ daj=dt ¼ 0 or

fzg ¼ f0g at t ¼ 0 are assumed for all computations presented here.

3.3. Response to travelling forces with wavelengths of l�E ¼ 17:5; 25; 30, and 33.3 m

In Section 3.1.3, it was shown that for a wavelength of 17.5m the yawing moment is zero, while the lateral force is

zero for a wavelength of 25m. Thus, in this section, first, the transient response to travelling aerodynamic forces with

wavelengths of either 17.5 or 25m are illustrated; and then, the transient response due to forces with wavelengths of

30 and 33.3m is obtained; these are examples of typical wavelengths of the aerodynamic force acting on high-speed

trains (Sakuma et al., 1998; Suzuki, 1999). The steady-state mode shapes of the train are also obtained for these
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examples. Table 2 gives the system parameters employed in this section, which are typical of actual high-speed trains in

Japan. The number of cars in the train is set at N ¼ 5. (It has been confirmed that similar results can be obtained for

other number of cars.)

Fig. 11 illustrates the response of the train to a travelling aerodynamic force with a wavelength of 17.5m. As shown in

Section 3.1.3, the aerodynamic moment for this wavelength is zero; hence, the expectation is that the angular

displacement of the cars will be zero. Figs. 11(a) and (b) show the lateral translational displacements of the centre of all

five cars; Fig. 11(b) shows the steady-state response from t ¼ 29 to 30, and Fig. 11(c) gives the angular displacements of

all five cars.

As seen in Fig. 11(a), from t ¼ 0 to 20, transient responses are clearly observed for all five cars. Cars 1 and 3 move in

the positive direction and Cars 2 and 5 in the negative direction. Eventually, all the cars reach a steady-state with a

phase difference from each other. Note that the transient response of the cars is very large, an order of magnitude larger

than in the steady-state. In fact, the amplitude of the transient response of actual trains may be smaller than that

obtained here because of differences between the analytical model and real trains. In real trains, the aerodynamic force

acts gradually on the cars, one by one, from the head toward the tail of the train when entering a tunnel. In contrast, in

the present model we assumed that the aerodynamic force acts on all cars simultaneously at t ¼ 0.

As seen in Fig. 11(b), the steady-state lateral translational displacement of each car has the same magnitude; however,

there is a phase difference between the motion of the cars, which can be explained in the following way. In Section 3.1.3,

it was shown that the front car, Car j, is expected to move first in the lateral and rotational directions, respectively, and

then, after a phase interval ð2p=lEÞ2l, the next car, Car j þ 1 will move. Substituting l�E ¼ 17:5 and 2l� ¼ 25 into

ð2p=l�EÞ2l�, we have ð2p=17:5Þ25 ’ 2pð1:43Þ rad. Thus, the front car, Car j, leads the next car, Car j þ 1, by 2pð1:43Þ,
which can be observed in Fig. 11(b). Note that, since 2pð1:43Þ ¼ 2pð1þ 0:43Þ, it appears that the phase difference

between two adjacent cars is 0:43ð2pÞ, as illustrated in Fig. 11(b).

On the other hand, as seen in Fig. 11(c), the rotational motion is approximately zero for all time. Hence, cars subject

to a travelling aerodynamic force of wavelength 17.5m display almost pure translational motion, and no rotational

motion. This confirms the expectation stated at the beginning of this section. Fig. 11(d) shows the train mode shape in

its steady-state, confirming that translational motion is dominant for all cars. Remember that this result can be expected

from Fig. 10, because the yawing moment for a wavelength of 17.5m is zero, while the lateral force has a peak value.

Fig. 12 illustrates the response of the train to a travelling aerodynamic force with a wavelength of 25m. In this case,

the lateral aerodynamic force is zero, and so the expectation is that there will be no translational displacement.

Fig. 12(a) shows lateral translational displacements of the centre of each of the five cars. Figs. 12(b) and (c) give angular

displacements of the cars, and Fig. 12(c) shows the steady-state motion from t ¼ 29 to 30.

As seen in Fig. 12(a), the transient lateral responses of all the cars ycj are considerably smaller than those for

l�E ¼ 17:5m shown in Fig. 11(a). On the other hand, as seen in Fig. 12(b), from t ¼ 0 to 15, rotational responses

are clearly observed for all cars. All cars move in the negative direction and then slightly in the positive direction. The

large transient motion in the rotational direction damps out very quickly, leading to the steady-state solution shown in

Fig. 12(c); in this case the five cars all move in-phase with each other. However, it may be considered that there is a

phase difference between the motion of adjacent cars, which can be explained in the following way. Substituting

l�E ¼ 25 and 2l� ¼ 25 into ð2p=l�EÞ2l�, we have ð2p=25Þ25 ¼ 2p. Thus, the front car, Car j, leads the next car, Car j þ 1,

by 2p, which means all cars move in the same way as shown in Fig. 12(c). Hence, it is shown that each car when subject

to a travelling aerodynamic force of wavelength 25m shows only rotational motion.

Fig. 12(d) shows the mode shape of the train for its steady-state response, confirming that rotational motion is

dominant for all cars. Again, note that this result can be expected from Fig. 10, because the lateral force of 25m

wavelength is zero, while the yawing moment has a non-zero value.

Figs. 13(a) and (b) illustrate the response of the train in the lateral and rotational directions, respectively, to a

travelling aerodynamic force with a wavelength of 30m. As seen in Fig. 13, initially, transient responses are clearly

observed for all cars in both directions. Eventually, the large transient response damps out and the resulting steady-state

response is as shown in Figs. 13(c) and (d).

Following a similar procedure to that described earlier in this section, it can be shown that the steady-state responses

of the cars are of the same magnitude but with a phase difference between their motions. The front car, Car j, leads the

next car, Car j þ 1, by 2pð56Þ. Note that, since 2pð56Þ ¼ 2pð1� 1
6Þ, it appears that the back car, Car j þ 1, leads the front

car, Car j, by 1
6
ð2pÞ as illustrated in Figs. 13(c) and (d). In other words, the motion of the tail-end cars travels toward the

head of the train as a wave, even though the force travels from the head of the train toward the tail.

Fig. 13(e) shows the translational and rotational steady-state response for Car 3. The translational displacement leads

the rotational displacement by 1
4
ð2pÞ or 90�, which is expected for all cars, as discussed in Section 3.1.3.

Fig. 14 illustrates the mode shapes of train in its steady-state response every 1
4
ð2pÞ and 1

6
ð2pÞ, respectively. As shown in

Fig. 14(b), since the phase difference between two adjacent cars is 1
6
ð2pÞ in the steady-state, the motion of the tail-end
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j ¼ 4; – – – , j ¼ 5. (a) Translational response; (b) steady-state translational response ðt ¼ 29230Þ; (c) rotational response; (d) mode

shape.
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cars can be considered to travel toward the head of the train as a wave, as mentioned before, even though the force

travels from the head toward the tail of the train.

Figs. 15(a) and (b) show the response of the train in the lateral and rotational directions, respectively, to a travelling

aerodynamic force with a wavelength of 33.3m. Figs. 15(c) and (d) give enlarged views of, respectively, Figs. 15(a) and (b)

in the steady-state for t ¼ 29230. As seen in Fig. 15, initially, transient responses of both ycj and aj are clearly

observed for all cars. Eventually, all the displacements fall within a range where the cars move with some phase

difference to each other, which shows that the system has reached steady-state. As before, it is noted that the transient

response of the cars is very large, an order of magnitude larger than the steady-state. As seen in Figs. 15(c) and (d), the

displacements of each car behave in almost the same way, with some phase difference between them. Using a similar

procedure as before, it can be shown that the front car, Car j, leads the back car, Car j þ 1, by 2pð3
4
Þ, which can be

observed in Figs. 15(c) and (d). Note that the motion of Car 1 and Car 5 are identical because of the phase difference

2pð3
4
Þ. Since 2pð3

4
Þ ¼ 2pð1� 1

4
Þ, it appears that the back car, Car j þ 1, leads the front car, Car j, by 1

4
ð2pÞ as illustrated in

Figs. 15(c) and (d).

Fig. 15(e) shows the steady-state response for Car 3. The translational displacement leads the rotational displacement

by 1
4
ð2pÞ or 90�, which is expected for all cars as discussed in Section 3.1.3.

Fig. 16(a) illustrates the mode shape of the train in its steady-state every 1
4ð2pÞ, as shown; since the phase difference

between two adjacent cars is 1
4
ð2pÞ, the motion of the tail-end cars can be considered to travel toward the head of the

train as a wave, even though the force travels from the head toward the tail of the train.
3.4. Comparison with previous work

The steady-state mode shapes obtained from the present study are compared to those of previous work obtained

from running experiments. Figs. 16(b) and (c) illustrate the motion of five adjacent cars in a high-speed train in
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unconfined flow (no-tunnel) and in tunnel sections, respectively, obtained from running experiments by Fujimoto et al.

(1998).

The mode shapes of a real train in unconfined flow (no-tunnel) are very different to those obtained when the train is

in tunnel section. Compare the result for t ¼ 0 in Fig. 16(a) and t ¼ 0 in Fig. 16(c); also t ¼ T=4 in Fig. 16(a) and

t ¼ T=4 in Fig. 16(c), et seq. From these comparisons, it is apparent that agreement between the results of the present

numerical study and previous experiments in a tunnel section is good. Therefore, it is shown that the effect of the

wavelength of a travelling aerodynamic force on the mode shapes of the finite-length train in the tunnel is considerable,

and thus the wavelength controls the phase differences between cars in the train. This result reinforces the idea that the

main cause of the vibrations of actual high-speed trains passing through tunnels is the forced vibrations induced by the

travelling aerodynamic force along the train.

3.5. Response to a force moving at the minimum phase velocity of a travelling wave in the train

As mentioned previously, it is known that, when the travelling velocity of a sinusoidal aerodynamic force along a

structure approaches the minimum phase velocity of travelling waves in the structure, the amplitude of the response

increases (Mead, 1971; Manabe, 2002). Thus, in this subsection, the response of the present system is examined when

the velocity of the moving force approaches that of the minimum phase velocity of a travelling wave in the system. In

Section 2, free wave propagation in an infinite-length train was studied. It was shown in Fig. 3 that the minimum phase

velocity of a travelling wave was approximately ’ 37m/s. Hence, the response of the present system is analyzed when

the travelling force speed VE is set at this minimum phase velocity, i.e., VE ¼ 37m/s. In addition, the response to the

force moving at a velocity other than this minimum phase velocity is obtained. The system parameters employed in

these calculations are as indicated in Table 3. Fig. 17(a) shows the response of Car 3 in a five-car train when the train is

subjected to an aerodynamic force travelling with a velocity of 37m/s. It is apparent from Fig. 17(a) that the amplitude

of car displacements greatly increases with time. Fig. 17(b) illustrates the response to the force travelling at

VE ¼ 90m/s, and it is obvious that it is considerably smaller than that for VE ¼ 37m/s.
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Fig. 17. Response to an aerodynamic force travelling (a) at the minimum phase velocity of travelling wave, cph, obtained in Section 2:

VE ¼ cph ¼ 37m=s and (b) at V E ¼ 90m=s: ———, j ¼ 1; — 
 —, j ¼ 2; — 
 
 —, j ¼ 3; 
 
 
 
 
 
, j ¼ 4; – – – , j ¼ 5. See Table 3 for

values of system parameters employed.

Table 3

System parameters for analyzing the response of the finite-length train to the travelling aerodynamic force

N ¼ 5 2ljð¼ lcarÞ ¼ 14:12 (25 m) LA ¼ 70:6 (125 m)

a ¼ 1:77m b ¼ 0:72 R�=a ¼ 2:24
A=Ad ¼ 0:2 A

0

=A ¼ 1:0 rf ¼ 1:23kg=m3

rcar ¼ 151:6kg=m3 U ¼ 5:0 ð¼ 102:3m=s ¼ 368km=hÞ CN ¼ 0:00644

CT ¼ 2CN ¼ 0:01288 CD ¼ 0:0 Cb ¼ 0:157
f n ¼ 1:0 f t ¼ 0:8 CE ¼ 0:06
l�E ¼ 100m kf ¼ kb ¼ 3:53� 105 N=m ka ¼ 3:0� 107 Nm=rad

kZ ¼ 9:8� 103 N=m k0 ¼ 1:0� 104 N=m No mechanical damping
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Finally, Fig. 18 shows the maximum lateral translational displacement response to a travelling force with speeds

ranging from 0.01 to 100m/s. The amplitude of the response to the force is a maximum for waves travelling at

VE ’ cph;min, and this maximum is considerably larger than that for the other travelling wave speeds. In fact, the

maximum velocities of modern high-speed trains are in the range 50–100m/s, which is higher than the minimum phase

velocity of travelling wave, cph;min ’ 37m/s, obtained in Section 2.
4. Conclusions

In Part 1, the companion paper to this one (Sakuma et al., 2008), modelling and basic dynamics of a train of flexibly

interconnected rigid cylinders subjected to fluid dynamic forces were studied theoretically; in Part 2, this paper, wave

propagation and response of the train system were examined.

The effect of aerodynamic forces and of the magnitude of translational, rotational, and supporting springs on

wave propagation in an infinite-length train was examined in the present paper, both qualitatively and quantitatively,

by considering the dispersion relations of the system. The following conclusions were obtained: (a) when fluid

damping terms exist in the equations of motion, the frequency bands of the dispersion relation shift, and thus

travelling wave modes may exist in the train, and (b) the effect of aerodynamic forces on wave propagation in

a train with bogie cars ðb ¼ 0:72Þ is greater than that for a train of articulated cars ðb ¼ 1:0Þ, especially in the transverse

mode.

The response of the LTB finite-length train to a travelling sinusoidal aerodynamic force was also examined, as this

simulates the features of the force experienced by trains passing through a tunnel. In addition, the response of the

system was examined when the velocity of the force approached that of the minimum phase velocity of travelling waves

in the system.

The effects of the wavelength, lE , of the travelling aerodynamic force on the mode shapes of a finite-length train were

clarified. It was shown that the wavelength controls the phase differences between cars in the train. The front car moves

first in the lateral and rotational directions, and then after a phase interval given by ð2p=lEÞlcar, the back car moves.

Both the lateral force and yawing moment acting on the front car lead those on the back car by the same phase

difference. For this reason, it appears that, for certain wavelengths, the steady-state motion of the tail-end cars can be

considered to travel toward the head of the train as a wave, even though the force travels from the head of the train

toward its tail.

The mode shapes obtained for the train in its steady-state are qualitatively in good agreement with those of previous

work obtained in running experiments by Fujimoto et al. (1998). These results reinforce the idea that the vibration of

actual high-speed trains running through tunnels is mainly forced vibration by the travelling aerodynamic force along the

train. In addition, even though a large number of simplifying idealizations were introduced, especially in the structural

model, the present model may be sufficient to examine qualitatively the response of a train to this aerodynamic force.

Finally, the response of a train to a force moving at the minimum phase velocity of travelling waves in the train was

examined. It was found that the response of the train can be considerably amplified when the speed of the travelling

force coincides with the minimum phase velocity of travelling waves in the train.
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